Low Protein Diet Fat Loss

Highlights

  • Very low protein caused decreased body fat and improved glucose tolerance

  • Fatty acid and amino acid metabolism were changed by dietary low protein

  • The 1% protein group did not show hyperphagia despite the hunger pathway being activated

  • The effect of 1% protein on food intake was linked to hypothalamic mTOR signaling

Summary

The protein leverage hypothesis predicts that low dietary protein should increase energy intake and cause adiposity. We designed 10 diets varying from 1% to 20% protein combined with either 60% or 20% fat. Contrasting the expectation, very low protein did not cause increased food intake. Although these mice had activated hunger signaling, they ate less food, resulting in decreased body weight and improved glucose tolerance but not increased frailty, even under 60% fat. Moreover, they did not show hyperphagia when returned to a 20% protein diet, which could be mimicked by treatment with rapamycin. Intracerebroventricular injection of AAV-S6K1 significantly blunted the decrease in both food intake and body weight in mice fed 1% protein, an effect not observed with inhibition of eIF2a, TRPML1, and Fgf21 signaling. Hence, the 1% protein diet induced decreased food intake and body weight via a mechanism partially dependent on hypothalamic mTOR signaling.

Graphical abstract

Figure thumbnail fx1

Keywords

  • obesity
  • low protein
  • energy intake
  • energy expenditure
  • hunger
  • mTOR signaling

To read this article in full you will need to make a payment

References

    • Ahima R.S.
    • Antwi D.A.

    Brain regulation of appetite and satiety.

    Endocrinol. Metab. Clin. North Am. 2008; 37 : 811-823
    • Aklan I.
    • Sayar Atasoy N.
    • Yavuz Y.
    • Ates T.
    • Coban I.
    • Koksalar F.
    • Filiz G.
    • Topcu I.C.
    • Oncul M.
    • Dilsiz P.
    • et al.

    NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways.

    Cell Metab. 2020; 31 : 313-326.e5
    • Alejandro E.U.
    • Gregg B.
    • Wallen T.
    • Kumusoglu D.
    • Meister D.
    • Chen A.
    • Merrins M.J.
    • Satin L.S.
    • Liu M.
    • Arvan P.
    • Bernal-Mizrachi E.

    Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring.

    J. Clin. Invest. 2014; 124 : 4395-4410
    • Anders S.
    • McCarthy D.J.
    • Chen Y.
    • Okoniewski M.
    • Smyth G.K.
    • Huber W.
    • Robinson M.D.

    Count-based differential expression analysis of RNA sequencing data using R and Bioconductor.

    Nat. Protoc. 2013; 8 : 1765-1786
    • Andrikopoulos S.
    • Blair A.R.
    • Deluca N.
    • Fam B.C.
    • Proietto J.

    Evaluating the glucose tolerance test in mice.

    Am. J. Physiol. Endocrinol. Metab. 2008; 295 : E1323-E1332
    • Anthony T.G.
    • Morrison C.D.
    • Gettys T.W.

    Remodeling of lipid metabolism by dietary restriction of essential amino acids.

    Diabetes. 2013; 62 : 2635-2644
    • Beugnet A.
    • Tee A.R.
    • Taylor P.M.
    • Proud C.G.

    Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability.

    Biochem. J. 2003; 372 : 555-566
    • Blouet C.
    • Schwartz G.J.

    Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding.

    Cell Metab. 2012; 16 : 579-587
    • Carroll B.
    • Maetzel D.
    • Maddocks O.D.
    • Otten G.
    • Ratcliff M.
    • Smith G.R.
    • Dunlop E.A.
    • Passos J.F.
    • Davies O.R.
    • Jaenisch R.
    • et al.

    Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.

    eLife. 2016; 5 : e11058
    • Cheng Y.
    • Meng Q.
    • Wang C.
    • Li H.
    • Huang Z.
    • Chen S.
    • Xiao F.
    • Guo F.

    Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue.

    Diabetes. 2010; 59 : 17-25
    • Cota D.
    • Proulx K.
    • Smith K.A.
    • Kozma S.C.
    • Thomas G.
    • Woods S.C.
    • Seeley R.J.

    Hypothalamic mTOR signaling regulates food intake.

    Science. 2006; 312 : 927-930
    • Dagon Y.
    • Hur E.
    • Zheng B.
    • Wellenstein K.
    • Cantley L.C.
    • Kahn B.B.

    P70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake.

    Cell Metab. 2012; 16 : 104-112
    • De Livera A.M.
    • Dias D.A.
    • De Souza D.
    • Rupasinghe T.
    • Pyke J.
    • Tull D.
    • Roessner U.
    • McConville M.
    • Speed T.P.

    Normalizing and integrating metabolomics data.

    Anal. Chem. 2012; 84 : 10768-10776
    • De Livera A.M.
    • Olshansky M.
    • Speed T.P.

    Statistical analysis of metabolomics data.

    Methods Mol. Biol. 2013; 1055 : 291-307
    • Derous D.
    • Mitchell S.E.
    • Green C.L.
    • Chen L.
    • Han J.D.
    • Wang Y.
    • Promislow D.E.
    • Lusseau D.
    • Speakman J.R.
    • Douglas A.

    The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways.

    Aging. 2016; 8 : 642-663
    • Derous D.
    • Mitchell S.E.
    • Green C.L.
    • Wang Y.
    • Han J.D.
    • Chen L.
    • Promislow D.E.
    • Lusseau D.
    • Speakman J.R.
    • Douglas A.

    The effects of graded levels of calorie restriction: VII. Topological rearrangement of hypothalamic aging networks.

    Aging. 2016; 8 : 917-932
    • Fontana L.
    • Cummings N.E.
    • Arriola Apelo S.I.
    • Neuman J.C.
    • Kasza I.
    • Schmidt B.A.
    • Cava E.
    • Spelta F.
    • Tosti V.
    • Syed F.A.
    • et al.

    Decreased consumption of branched-chain amino acids improves metabolic health.

    Cell Rep. 2016; 16 : 520-530
    • Guo F.
    • Cavener D.R.

    The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid.

    Cell Metab. 2007; 5 : 103-114
    • Hambly C.
    • Simpson C.A.
    • McIntosh S.
    • Duncan J.S.
    • Dalgleish G.D.
    • Speakman J.R.

    Calorie-restricted mice that gorge show less ability to compensate for reduced energy intake.

    Physiol. Behav. 2007; 92 : 985-992
    • Heikkinen S.
    • Argmann C.A.
    • Champy M.F.
    • Auwerx J.

    Evaluation of glucose homeostasis.

    Curr. Protoc. Mol. Biol. 2007; 77 : 29B.3.1-29B.3.22
    • Hill C.M.
    • Laeger T.
    • Dehner M.
    • Albarado D.C.
    • Clarke B.
    • Wanders D.
    • Burke S.J.
    • Collier J.J.
    • Qualls-Creekmore E.
    • Solon-Biet S.M.
    • et al.

    FGF21 signals protein status to the brain and adaptively regulates food choice and metabolism.

    Cell Rep. 2019; 27 : 2934-2947.e3
    • Hu S.
    • Wang L.
    • Yang D.
    • Li L.
    • Togo J.
    • Wu Y.
    • Liu Q.
    • Li B.
    • Li M.
    • Wang G.
    • et al.

    Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice.

    Cell Metab. 2018; 28 : 415-431.e4
    • Huang X.
    • Hancock D.P.
    • Gosby A.K.
    • McMahon A.C.
    • Solon S.M.
    • Le Couteur D.G.
    • Conigrave A.D.
    • Raubenheimer D.
    • Simpson S.J.

    Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice.

    Obesity (Silver Spring). 2013; 21 : 85-92
    • Jewell J.L.
    • Kim Y.C.
    • Russell R.C.
    • Yu F.X.
    • Park H.W.
    • Plouffe S.W.
    • Tagliabracci V.S.
    • Guan K.L.

    Metabolism. Differential regulation of mTORC1 by leucine and glutamine.

    Science. 2015; 347 : 194-198
    • Keller U.

    Dietary proteins in obesity and in diabetes.

    Int. J. Vitam. Nutr. Res. 2011; 81 : 125-133
    • Kenny T.E.
    • Hebert M.
    • MacCallum P.
    • Whiteman J.
    • Martin G.M.
    • Blundell J.

    Single injection of rapamycin blocks post-food restriction hyperphagia and body-weight regain in rats.

    Behav. Neurosci. 2019; 133 : 98-109
    • Kim D.
    • Langmead B.
    • Salzberg S.L.

    HISAT: a fast spliced aligner with low memory requirements.

    Nat. Methods. 2015; 12 : 357-360
    • Kitada M.
    • Ogura Y.
    • Monno I.
    • Koya D.

    The impact of dietary protein intake on longevity and metabolic health.

    EBioMedicine. 2019; 43 : 632-640
    • Kitada M.
    • Ogura Y.
    • Suzuki T.
    • Sen S.
    • Lee S.M.
    • Kanasaki K.
    • Kume S.
    • Koya D.

    A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity.

    Diabetologia. 2016; 59 : 1307-1317
    • Kleinridders A.
    • Schenten D.
    • Könner A.C.
    • Belgardt B.F.
    • Mauer J.
    • Okamura T.
    • Wunderlich F.T.
    • Medzhitov R.
    • Brüning J.C.

    MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity.

    Cell Metab. 2009; 10 : 249-259
    • Laeger T.
    • Albarado D.C.
    • Burke S.J.
    • Trosclair L.
    • Hedgepeth J.W.
    • Berthoud H.R.
    • Gettys T.W.
    • Collier J.J.
    • Münzberg H.
    • Morrison C.D.

    Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2.

    Cell Rep. 2016; 16 : 707-716
    • Laeger T.
    • Henagan T.M.
    • Albarado D.C.
    • Redman L.M.
    • Bray G.A.
    • Noland R.C.
    • Münzberg H.
    • Hutson S.M.
    • Gettys T.W.
    • Schwartz M.W.
    • Morrison C.D.

    FGF21 is an endocrine signal of protein restriction.

    J. Clin. Invest. 2014; 124 : 3913-3922
    • Li H.
    • Handsaker B.
    • Wysoker A.
    • Fennell T.
    • Ruan J.
    • Homer N.
    • Marth G.
    • Abecasis G.
    • Durbin R.
    • 1000 Genome Project Data Processing Subgroup

    The sequence alignment/Map format and SAMtools.

    Bioinformatics. 2009; 25 : 2078-2079
    • Liao Y.
    • Smyth G.K.
    • Shi W.

    The subread aligner: fast, accurate and scalable read mapping by seed-and-vote.

    Nucleic Acids Res. 2013; 41 : e108
    • Liao Y.
    • Smyth G.K.
    • Shi W.

    featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.

    Bioinformatics. 2014; 30 : 923-930
    • Lund S.P.
    • Nettleton D.
    • McCarthy D.J.
    • Smyth G.K.

    Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates.

    Stat. Appl. Genet. Mol. Biol. 2012; 11
    • Maurin A.C.
    • Benani A.
    • Lorsignol A.
    • Brenachot X.
    • Parry L.
    • Carraro V.
    • Guissard C.
    • Averous J.
    • Jousse C.
    • Bruhat A.
    • et al.

    Hypothalamic eIF2alpha signaling regulates food intake.

    Cell Rep. 2014; 6 : 438-444
    • McCarthy D.J.
    • Chen Y.
    • Smyth G.K.

    Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation.

    Nucleic Acids Res. 2012; 40 : 4288-4297
    • McGuinness O.P.
    • Ayala J.E.
    • Laughlin M.R.
    • Wasserman D.H.

    NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse.

    Am. J. Physiol. Endocrinol. Metab. 2009; 297 : E849-E855
    • McManus B.L.
    • Korpela R.
    • Speakman J.R.
    • Cryan J.F.
    • Cotter P.D.
    • Nilaweera K.N.

    Bovine serum albumin as the dominant form of dietary protein reduces subcutaneous fat mass, plasma leptin and plasma corticosterone in high fat-fed C57/BL6J mice.

    Br. J. Nutr. 2015; 114 : 654-662
    • Mitchell S.E.
    • Delville C.
    • Konstantopedos P.
    • Hurst J.
    • Derous D.
    • Green C.
    • Chen L.
    • Han J.J.
    • Wang Y.
    • Promislow D.E.
    • et al.

    The effects of graded levels of calorie restriction: II. Impact of short term calorie and protein restriction on circulating hormone levels, glucose homeostasis and oxidative stress in male C57BL/6 mice.

    Oncotarget. 2015; 6 : 23213-23237
    • Mitchell S.E.
    • Tang Z.
    • Kerbois C.
    • Delville C.
    • Konstantopedos P.
    • Bruel A.
    • Derous D.
    • Green C.
    • Aspden R.M.
    • Goodyear S.R.
    • et al.

    The effects of graded levels of calorie restriction: I. impact of short term calorie and protein restriction on body composition in the C57BL/6 mouse.

    Oncotarget. 2015; 6 : 15902-15930
    • Muniyappa R.
    • Lee S.
    • Chen H.
    • Quon M.J.

    Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage.

    Am. J. Physiol. Endocrinol. Metab. 2008; 294 : E15-E26
    • Nixon J.P.
    • Zhang M.
    • Wang C.
    • Kuskowski M.A.
    • Novak C.M.
    • Levine J.A.
    • Billington C.J.
    • Kotz C.M.

    Evaluation of a quantitative magnetic resonance imaging system for whole body composition analysis in rodents.

    Obesity (Silver Spring). 2010; 18 : 1652-1659
    • Orgeron M.L.
    • Stone K.P.
    • Wanders D.
    • Cortez C.C.
    • Van N.T.
    • Gettys T.W.

    The impact of dietary methionine restriction on biomarkers of metabolic health.

    Prog. Mol. Biol. Transl. Sci. 2014; 121 : 351-376
    • Pertea M.
    • Kim D.
    • Pertea G.M.
    • Leek J.T.
    • Salzberg S.L.

    Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.

    Nat. Protoc. 2016; 11 : 1650-1667
    • R Core Team

    R: a language and environment for statistical computing.

    R Foundation for Statistical Computing, 2015
    • Robinson M.D.
    • McCarthy D.J.
    • Smyth G.K.

    edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.

    Bioinformatics. 2010; 26 : 139-140
    • Robinson M.D.
    • Oshlack A.

    A scaling normalization method for differential expression analysis of RNA-seq data.

    Genome Biol. 2010; 11 : R25
    • Robinson M.D.
    • Smyth G.K.

    Moderated statistical tests for assessing differences in tag abundance.

    Bioinformatics. 2007; 23 : 2881-2887
    • Sato T.
    • Ito Y.
    • Nagasawa T.

    Dietary L-lysine suppresses autophagic proteolysis and stimulates Akt/mTOR signaling in the skeletal muscle of rats fed a low-protein diet.

    J. Agric. Food Chem. 2015; 63 : 8192-8198
    • Schutz Y.

    Macronutrients and energy balance in obesity.

    Metabolism. 1995; 44 : 7-11
    • Schwartz M.W.
    • Woods S.C.
    • Porte Jr., D.
    • Seeley R.J.
    • Baskin D.G.

    Central nervous system control of food intake.

    Nature. 2000; 404 : 661-671
    • Simpson S.
    • Raubenheimer D.

    The Nature of Nutrition: A Unifying Framework from Animal Adaption to Human Obesity.

    Princeton University Press, 2012
    • Smith C.A.
    • Want E.J.
    • O'Maille G.
    • Abagyan R.
    • Siuzdak G.

    XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.

    Anal. Chem. 2006; 78 : 779-787
    • Smith M.A.
    • Katsouri L.
    • Irvine E.E.
    • Hankir M.K.
    • Pedroni S.M.
    • Voshol P.J.
    • Gordon M.W.
    • Choudhury A.I.
    • Woods A.
    • Vidal-Puig A.
    • et al.

    Ribosomal S6K1 in POMC and AgRP neurons regulates glucose homeostasis but not feeding behavior in mice.

    Cell Rep. 2015; 11 : 335-343
    • Solon-Biet S.M.
    • McMahon A.C.
    • Ballard J.W.
    • Ruohonen K.
    • Wu L.E.
    • Cogger V.C.
    • Warren A.
    • Huang X.
    • Pichaud N.
    • Melvin R.G.
    • et al.

    The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice.

    Cell Metab. 2014; 19 : 418-430
    • Somerville J.M.
    • Aspden R.M.
    • Armour K.E.
    • Armour K.J.
    • Reid D.M.

    Growth of C57BL/6 mice and the material and mechanical properties of cortical bone from the tibia.

    Calcif. Tissue Int. 2004; 74 : 469-475
    • Stekhoven D.J.
    • Bühlmann P.

    MissForest--non-parametric missing value imputation for mixed-type data.

    Bioinformatics. 2012; 28 : 112-118
    • Sysi-Aho M.
    • Katajamaa M.
    • Yetukuri L.
    • Oresic M.

    Normalization method for metabolomics data using optimal selection of multiple internal standards.

    BMC Bioinformatics. 2007; 8 : 93
    • Uppal K.
    • Walker D.I.
    • Jones D.P.

    xMSannotator: an R package for network-based annotation of high-resolution metabolomics data.

    Anal. Chem. 2017; 89 : 1063-1067
    • Varela L.
    • Martínez-Sánchez N.
    • Gallego R.
    • Vázquez M.J.
    • Roa J.
    • Gándara M.
    • Schoenmakers E.
    • Nogueiras R.
    • Chatterjee K.
    • Tena-Sempere M.
    • et al.

    Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.

    J. Pathol. 2012; 227 : 209-222
    • Wang S.
    • Tsun Z.Y.
    • Wolfson R.L.
    • Shen K.
    • Wyant G.A.
    • Plovanich M.E.
    • Yuan E.D.
    • Jones T.D.
    • Chantranupong L.
    • Comb W.
    • et al.

    Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.

    Science. 2015; 347 : 188-194
    • Weir J.B.

    New methods for calculating metabolic rate with special reference to protein metabolism.

    J. Physiol. 1949; 109 : 1-9
    • Wilding J.P.

    Neuropeptides and appetite control.

    Diabet. Med. 2002; 19 : 619-627
    • Xia T.
    • Cheng Y.
    • Zhang Q.
    • Xiao F.
    • Liu B.
    • Chen S.
    • Guo F.

    S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid.

    Diabetes. 2012; 61 : 2461-2471
    • Xiao F.
    • Huang Z.
    • Li H.
    • Yu J.
    • Wang C.
    • Chen S.
    • Meng Q.
    • Cheng Y.
    • Gao X.
    • Li J.
    • et al.

    Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways.

    Diabetes. 2011; 60 : 746-756
    • Yang S.B.
    • Tien A.C.
    • Boddupalli G.
    • Xu A.W.
    • Jan Y.N.
    • Jan L.Y.

    Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons.

    Neuron. 2012; 75 : 425-436
    • Yang Y.
    • Zhang Y.
    • Xu Y.
    • Luo T.
    • Ge Y.
    • Jiang Y.
    • Shi Y.
    • Sun J.
    • Le G.

    Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice.

    Food Funct. 2019; 10 : 5952-5968
    • Zhang Q.
    • Liu B.
    • Cheng Y.
    • Meng Q.
    • Xia T.
    • Jiang L.
    • Chen S.
    • Liu Y.
    • Guo F.

    Leptin signaling is required for leucine deprivation-enhanced energy expenditure.

    J. Biol. Chem. 2014; 289 : 1779-1787
    • Zhang X.
    • Chen W.
    • Gao Q.
    • Yang J.
    • Yan X.
    • Zhao H.
    • Su L.
    • Yang M.
    • Gao C.
    • Yao Y.
    • et al.

    Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR.

    PLoS Biol. 2019; 17 : e3000252
    • Zhang X.
    • Sergin I.
    • Evans T.D.
    • Jeong S.J.
    • Rodriguez-Velez A.
    • Kapoor D.
    • Chen S.
    • Song E.
    • Holloway K.B.
    • Crowley J.R.
    • et al.

    High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy.

    Nat Metab. 2020; 2 : 110-125
    • Zhang F.
    • Zhao S.
    • Yan W.
    • Xia Y.
    • Chen X.
    • Wang W.
    • Zhang J.
    • Gao C.
    • Peng C.
    • Yan F.
    • et al.

    Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy.

    EBioMedicine. 2016; 13 : 157-167

Article Info

Publication History

Published: March 4, 2021

Accepted: January 21, 2021

Received in revised form: October 5, 2020

Received: March 13, 2020

Identification

DOI: https://doi.org/10.1016/j.cmet.2021.01.017

Copyright

© 2021 Published by Elsevier Inc.

ScienceDirect

Access this article on ScienceDirect

Linked Article

Cell Press commenting guidelines

To submit a comment for a journal article, please use the space above and note the following:

  • We will review submitted comments within 2 business days.
  • This forum is intended for constructive dialog. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted.
  • We recommend that commenters identify themselves with full names and affiliations.
  • Comments must be in compliance with our Terms & Conditions.
  • Comments will not be peer-reviewed.

Low Protein Diet Fat Loss

Source: https://www.cell.com/cell-metabolism/pdfExtended/S1550-4131(21)00017-6

0 Response to "Low Protein Diet Fat Loss"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel